Programming Philosophies

Rule of Separation: Separate policy from mechanism; separate interfaces from engines.

Rule of Parsimony: Write a big program only when it is clear by demonstration that nothing

1. Rule of Modularity: Write simple parts connected by clean interfaces.
2. Rule of Clarity: Clarity is better than cleverness.
3. Rule of Composition: Design programs to be connected to other programs.
4,
5. Rule of Simplicity: Design for simplicity; add complexity only where you must.
6.
else will do.
7.

Rule of Transparency: Design for visibility to make inspection and debugging easier.

8. Rule of Robustness: Robustness is the child of transparency and simplicity.
9. Rule of Representation: Fold knowledge into data so program logic can be stupid and

robust.

10. Rule of Least Surprise: In interface design, always do the least surprising thing.

11. Rule of Silence: When a program has nothing surprising to say, it should say nothing.
12. Rule of Repair: When you must fail, fail noisily and as soon as possible.

13. Rule of Economy: Programming time is expensive; conserve it in preference to machine

time.

14. Rule of Generation: Avoid hand-hacking; write programs to write programs when you can.
15. Rule of Optimization: Prototype before polishing. Get it working before you optimize it.
16. Rule of Diversity: Distrust all claims for “one true way.”

17. Rule of Extensibility: Design for the future, because it will be here sooner than you think.

Robert Pike (Notes on C Programming):

Rule 1. You can’t tell where a program is going
to spend its time. Bottlenecks occur in
surprising places, so don’t try to second guess
and put in a speed hack until you’ve prove that’s
where the bottleneck is.

Rule 2. Measure. Don’t tune for speed until
you’ve measured, and even then don’t unless one
part of the code overwhelms the rest.

Rule 3. Fancy algorithms are slow when n is
small, and n is usually small. Fancy algorithms
have big constants. Until you know that n is
frequently going to be big, don’t get fancy.
(Even if n does get big, use Rule 2 first.)

Rule 4. Fancy algorithms are buggier than
simple ones, and there’s much harder to
implement. Use simple algorithms as well as
simple data structures.

Rule 5. Data dominates. If you’ve chosen the
right data structures and organized things well,
the algorithms will almost always be self-
evident. Data structures, not algorithms, are
central to programming.

Rule 6. There is no Rule 6.

“When in doubt, use brute force.”
—Ken Thompson (designer and implementer of Unix)

Doug Mcllroy (the inventor of Unix pipes):

(i) Make each program do one thing well.
To do a new job, build afresh rather than
complicate old programs by adding new
features.

(i) Expect the output of every program to
become the input to another, as yet
unknown, program. Don’t clutter output
with extraneous information. Avoid
stringently columnar or binary input
formats. Don't insist on interactive
input.

(iii) Design and build software, even
operating systems, to be tried early,
ideally within weeks. Don’t hesitate to
throw away the clumsy parts and rebuild
them.

(iv) Use tools in preference to unskilled help
to lighten a programming task, even if
you have to detour to build the tools and
expect to throw some of them out after
you’ve finished using them.

This is the Unix philosophy: Write programs that
do one thing and do it well. Write programs to
work together. Write programs to handle text
streams, because that is the universal interface.

“Show me your flow charts and conceal your tables and I shall continue to be mystified, show me your

tables and I won’t usually need your flow charts; they’ll be obvious.”

—Brooks, The Mythical Man-Month



